4.7 Article

Inorganic arsenic-mediated upregulation ofAS3MTpromotes proliferation of nonsmall cell lung cancer cells by regulating cell cycle genes

Journal

ENVIRONMENTAL TOXICOLOGY
Volume 36, Issue 2, Pages 204-212

Publisher

WILEY
DOI: 10.1002/tox.23026

Keywords

arsenic; AS3MT; CDKs; cell cycle genes; non-small cell lung cancer; p21; proliferation

Funding

  1. National Natural Science Foundation of China [81160343]
  2. Ten Thousand Talent Program of Yunnan Province [YNWR-MY-2018-012]
  3. Yunnan Provincial Department of Education [2019Y0259]

Ask authors/readers for more resources

The study found that arsenic increased the expression of AS3MT in vivo and in vitro, directly acting on cells and affecting the progression of non-small cell lung cancer by regulating cell cycle genes.
Long-term arsenic exposure can promote cancer through epigenetic mechanisms, and arsenite methyltransferase (AS3MT) plays an important role in this process. However, the expression patterns and mechanisms of AS3MT in arsenic carcinogenesis remain unclear. In this study, we found that the AS3MT was overexpressed in arsenic exposed population, non-small cell lung cancer (NSCLC) tissues, and A549 cells with sodium arsenite (NaAsO2) treatment for 48 hours. Besides, the level of AS3MT expression was positively correlated with the concentrations of urinary total arsenic (tAs), inorganic arsenic (iAs), methanearsonic acid (MMA), and dimethylarsinic acid (DMA) in all subjects. Functional experiments demonstrated that siRNA-mediated knockdown of AS3MT significantly inhibited proliferation of A549 cells. Mechanism investigation revealed that silencing of AS3MT inhibited proliferation by increasing mRNA expression levels of p21 and E2F1, and inhibiting CDK1, CDK2, CDK4, CDK6, Cyclin A2, Cyclin E1, Cyclin E2, and PCNA mRNA expression. Therefore, arsenic increased AS3MT expression in vivo and in vitro, which could directly act on the cell and affect the progression of NSCLC by regulating cell cycle genes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available