4.7 Article

Potential of conservation agriculture modules for energy conservation and sustainability of rice-based production systems of Indo-Gangetic Plain region

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 28, Issue 1, Pages 246-261

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-020-10395-x

Keywords

Conservation agriculture; Crop residue retention; Crop establishment; Direct seeded rice; Energy budgeting; Rice; maize; wheat system

Funding

  1. United States Agency for International Development (USAID)
  2. Bill and Melinda Gates Foundation

Ask authors/readers for more resources

The study assessed different conservation agriculture modules in rice-based cropping systems for energy conservation and productivity. Conservation tillage treatments reduced energy requirements and increased crop yield, enhancing energy productivity.
Rice-based cropping systems are the most energy-intensive production systems in South Asia. Sustainability of the rice-based cropping systems is nowadays questioned with declining natural resource base, soil degradation, environmental pollution, and declining factor productivity. As a consequence, the search for energy and resource conservation agro-techniques is increasing for sustainable and cleaner production. Conservation agriculture (CA) practices have been recommended for resource conservation, soil health restoration and sustaining crop productivity. The present study aimed to assess the different CA modules in rice-based cropping systems for energy conservation, energy productivity, and to define energy-economic relations. A field experiment consisted of four different tillage-based crop establishment practices (puddled-transplanted rice followed by (fb) conventional-till maize/wheat (CTTPR-CT), non-puddled transplanted ricefbzero-till maize/wheat (NPTPR-ZT), zero-till transplanted ricefbzero-till maize/wheat (ZTTPR-ZT), zero-till direct-seeded ricefbzero-till maize/wheat (ZTDSR-ZT)), with two residue management treatments (residue removal, residue retention) in rice-wheat and rice-maize rotations were evaluated for energy budgeting and energy-economic relations. Conservation-tillage treatments (NPTPR-ZT, ZTTPR-ZT, and ZTDSR-ZT) reduced the energy requirements over conventional tillage treatments, with the greater reduction in ZTTPR-ZT and ZTDSR-ZT treatments. Savings of energy in conservation-tillage treatments were attributed to reduced energy use in land preparation (69-100%) and irrigation (23-27%), which consumed a large amount of fuel energy. Conservation-tillage treatments increased grain and straw/stover yields of crops, eventually increased the output energy (6-16%), net energy (14-26%), energy ratio (25-33%), and energy productivity (23-34%) as compared with CTTPR-CT. For these energy parameters, the treatment order was ZTDSR-ZT >= ZTTPR-ZT > NPTPR-ZT > CTTPR-CT (p < 0.05). Crop residue retention reduced net energy, energy ratio, and energy productivity when compared with residue removal. Our results of energy-economic relations favored the conservative hypothesis, which envisages that energy and monetary investments are not essentially the determinants of crop productivity. Thus, zero tillage-based crop establishments (ZTTPR-ZT, ZTDSR-ZT) in rice-based production systems could be the sustainable alternative to conventional tillage-based agriculture (CTTPR-CT) as they conserved non-renewable energy sources, reduced water requirement, and increased crop productivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available