4.7 Article

Adsorption-photocatalytic processes for removal of pentachlorophenol contaminant using FeNi3/SiO2/ZnO magnetic nanocomposite under simulated solar light irradiation

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 28, Issue 6, Pages 7462-7475

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-020-10927-5

Keywords

Adsorption; Photocatalytic; Pentachlorophenol; Magnetic nanocomposite; Kinetic

Funding

  1. Birjand University of Medical Sciences (Iran)

Ask authors/readers for more resources

The study examined the adsorption followed by photocatalytic degradation process for pentachlorophenol (PCP) removal using FeNi3/SiO2/ZnO magnetic nanocomposite, achieving 100% removal at optimum conditions (pH = 3, nanocomposite dose = 0.5 g/L, contact time = 180 min, initial PCP concentration = 10 mg/L).
The adsorption followed by photocatalytic degradation process was examined for the pentachlorophenol (PCP) removal from aqueous solution. These processes were accomplished by using FeNi3/SiO2/ZnO magnetic nanocomposite as an adsorbent-photocatalytic agent and under the irradiation of solar light. The magnetic nanocomposite used was first synthesized and then was characterized using transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), vibrating-sample magnetometer (VSM), and X-ray diffraction (XRD) spectroscopy. The PCP removal efficiency was tested for various factors, including pH, PCP concentration, and nanocomposite dose at different contact times. The characterization results of TEM, FE-SEM, and VSM analysis showed that the synthesized nanoparticles are amorphous and tend to agglomerate due to their high super-paramagnetic property. In addition, the EDX technique showed that the Zn and O elements had the highest weight percent in the synthesized nanocomposite, respectively. On the other hand, XRD analysis revealed that the crystalline size of the nanoparticles was about 42 nm. The kinetic of PCP degradation followed the pseudo-first-order model withR(2)= 0.978. According to the results of the isotherm study, the adsorption of PCP onto the nanoparticles followed the Freundlich model. The results of adsorption-photocatalytic degradation experiments showed that 100% removal of PCP was obtained at optimum conditions of pH = 3, nanocomposite dose = 0.5 g/L, contact time = 180 min, and initial PCP concentration of 10 mg/L. Through the results obtained from this study, the adsorption process followed by solar light photocatalytic degradation process using FeNi3/SiO2/ZnO magnetic nanocomposite is found to be an efficacious treatment method for the removal of PCP contaminant from water and wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available