4.7 Article

Removal of sulfadiazine in a modified ultrafiltration membrane (PVDF-PVP-TiO2-FeCl3) filtration-photocatalysis system: parameters optimizing and interferences of drinking water

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 27, Issue 36, Pages 45605-45617

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-020-10426-7

Keywords

TiO2/Fe3+; Sulfadiazine; Modified ultrafiltration membrane; Photocatalytic mechanism; Water quality

Funding

  1. National Major Projects on Water Pollution Control and Management Technology program [2017ZX07501003, 2017ZX07502002]
  2. China Postdoctoral Science Foundation [2019M652451]
  3. Natural Science Foundation of Shandong Province [ZR2017MC047, ZR2019QEE022]
  4. Special Project of Taishan Scholar Construction Engineering [ts201712084]

Ask authors/readers for more resources

The addition of Fe(3+)to TiO2 is one of the effective methods to inhibit the recombination of photogenerated electrons and holes and thus improve the photocatalytic activity of TiO2. The effect of PVDF-PVP-TiO2-FeCl3 (PPTFe) membrane filtration-photocatalytic system on the removal of trace concentration of sulfadiazine (SD) in water was evaluated. A two-factor four-level experiment was established to optimize 16 self-made modified membranes. The optimal membrane was then characterized in seven tests (SEM, EDS, membrane pure water flux, contact angle, porosity, mean pore size, ATR-FTIR), resulting in the optimal ratio (PPTFe membrane with 1.2 wt%TiO2 and 0.8 wt%FeCl3). Compared with the original membrane, the pore number, pore size, permeability, and hydrophilicity of the PPTFe membrane were all enhanced. The removal efficiency (92.63%) of SD by PPTFe membrane filtration-photocatalysis system was investigated. The reaction rate (0.0214 min(-1)) of the removal SD of the system was determined according to the pseudo-first-order kinetic model. The removal performance of membrane type, pH, and water quality parameters (Cl-, SO42-, NO3-, HA) on PPTFe membrane filtration-photocatalytic system were also made a deep inquiry. The results reflected that acidic conditions (pH = 3) were beneficial to SD removal, the presence of Cl-, SO42-, and HA could inhibit SD removal, while the existence of NO3- was unaffected. Furthermore, the removal rate of SD in the actual water body was displayed well in this system. Finally, the possible photocatalytic degradation mechanism was proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available