4.8 Article

Identification and Quantification of Microplastics in Potable Water and Their Sources within Water Treatment Works in England and Wales

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 54, Issue 19, Pages 12326-12334

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.0c03211

Keywords

-

Funding

  1. UK Water Industry Research (UKWIR) [EQ01A231]
  2. NERC [noc010009] Funding Source: UKRI

Ask authors/readers for more resources

Microplastics were characterized in eight water treatment works (WTWs) in England and Wales (UK). Sources included river water, groundwater, and an upland reservoir. Water treatment varied from disinfection, filtration, sedimentation, and activated carbon techniques. At each WTW, five repeat samples of raw and potable water and two repeat sludge samples were taken over 5 months. Microplastics in water were captured on 10 mu m filters and nonplastic materials digested in the laboratory. Microplastics >= 25 mu m were analyzed using Fourier-transform infrared microscopy. Blanks revealed consistent polyethylene (PE), poly-(ethylene terephthalate) (PET), and polypropylene (PP) contamination. Spike recoveries for 63-90 mu m polyamide microplastics demonstrated 101% (standard deviation, SD 27%) and 113% (SD 15%) recovery for raw and potable waters and 52% (SD 13%) for sludge. Only four of the six WTWs sampled for raw water and only two of eight WTWs in their potable water had microplastics above the limit of quantification. Considering only the WTWs with quantifiable microplastics, then on average, 4.9 microplastic particles/L were present in raw water and only 0.00011 microplastic particles/L were present in potable water (99.99% removal). Values in waste sludge were highly variable. PE, PET, and PP were the most common polymers quantified in raw water and sludge, and polystyrene and acrylonitrile butadiene styrene were the most common polymers quantified in potable water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available