4.7 Article

Personal black carbon and ultrafine particles exposures among high school students in urban China

Journal

ENVIRONMENTAL POLLUTION
Volume 265, Issue PT A, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.114825

Keywords

Personalized exposure monitoring; Black carbon; Ultrafine particles; High school students; Urban China

Funding

  1. National Natural Science Foundation of China [81373089]
  2. National Key RAMP
  3. D Program of China [2017YFC1600500]

Ask authors/readers for more resources

Air pollution is a major public health challenge in the highly urbanized megacities of China. However, knowledge on exposure to ambient unregulated air pollutants such as black carbon (BC) and ultrafine particles (UFP) among the Chinese population, especially among urban high school students who may have highly variable time-activity patterns, is scarce. To address this, the personal exposures to BC and UFP of high school students (aged 17 to 18) in Chengdu, China were measured at 1-min intervals via portable samplers. Monitoring lasted for 2 consecutive 24-h periods with days classified as school days or non-school days. Time-activity diaries and measurements were combined to explore spatial, temporal, and behavioral factors that contribute to different exposure profiles. The overall geometric means of BC and UFP were 3.60 mu g/m(3) and 1.83 x 10(4)p/cm(3), respectively with notable spatiotemporal variation in exposures observed. In general, the household and transport microenvironments were the predominant contributors to total BC (74.5%) and UFP (36.5%) exposure. However, the outdoor public microenvironment was found to have significantly higher overall average levels of BC than the household and transport microenvironments (p < 0.001) while also presenting the greatest exposure dose intensity (EDI - a measure of exposure in a microenvironment in proportion to time spent in that environment) of 4.79. The largest overall average level of UFP occurred in the indoor public microenvironment followed by transport. The outdoor public microenvironment also presented the greatest EDI of UFP (4.17). This study shows notable spatiotemporal variety in exposure patterns and will inform future exposure and population health studies. The high EDI outdoors may mean that health positive activities, such as exercise, may be being undermined by ambient pollution. (C) 2020 The Authors. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available