4.7 Review

A review of heat integration approaches for organic rankine cycle with waste heat in production processes

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 221, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2020.113175

Keywords

Process heat integration; Organic Rankine Cycle; Optimization methods; Waste heat; Industrial systems

Ask authors/readers for more resources

Production systems represent a significant source of waste heat. The waste heat cannot be reused often. Many optimization methods can give a solution for waste heat recovery. However, the results do not depend only on the method. The low-temperature waste heat makes difficulties for its recovery within the processes. Organic Rankine Cycle units can be used for low-temperature heat transformation into electricity. Linking the Organic Rankine Cycle within the heat integrated system is not simple. This depends on the influence of a few important factors. The process parameters of the working medium, the physical and chemical characteristics of the working fluid, the continuity of heat supply, and the temperature level of waste heat are necessary conditions that must be included in optimization. The optimization method should determine the optimal operating point of the Organic Rankine Cycle. The displacement of the operating point leads to decrease in the effective transformation of heat into electricity. These problems are analyzed through a review of the methods and approaches used for the integration of Organic Rankine Cycle in thermal process systems. These include Pinch technology, Non Linear Programming, Multiple Integer Linear Programming, Genetic Algorithm, Artificial Neural Network and many different approaches for polygeneration systems. All methods were compared and systematized in a general scheme for integration of an Organic Rankine Cycle with low-temperature industrial waste heat supply. This work also includes experience in implemented and designed projects of an integrated Organic Rankine Cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available