4.7 Article

Deep learning and transfer learning models of energy consumption forecasting for a building with poor information data

Journal

ENERGY AND BUILDINGS
Volume 223, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2020.110156

Keywords

Building energy forecasting; Transfer learning; Deep learning; Energy consumption

Funding

  1. national key RD project

Ask authors/readers for more resources

Precise prediction of energy consumption in buildings could significantly optimize strategies for operating building equipment and release the energy savings potential of buildings. With advances in computer science and smart meters, data-driven energy forecasting models, particularly deep learning models, are becoming increasingly popular and can achieve good prediction accuracy. However, these models require a multitude of historical data from predicted buildings for training, which are difficult to acquire for newly constructed buildings or buildings with newly established measurement equipment. In order to obtain satisfactory prediction accuracy under such poor information state, this paper proposes two deep learning models, which are a sequence-to-sequence (seq2seq) model and a two dimensional (2D) convolutional neural network (CNN) with an attention layer, and transfer learning framework to improve prediction accuracy for a target building. A case study of three office buildings is discussed to demonstrate the proposed method and models. Compared with the results of a long short-term memory (LSTM) network with poor information state, the seq2seq model improved forecast accuracy for a building with a small quantity of data by 19.69 percentage points in mean absolute percentage error (MAPE), and the 2D CNN model by 20.54 percentage points, on average. (c) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available