4.7 Article

Pyrolysis kinetics of short rotation coppice poplar biomass

Journal

ENERGY
Volume 207, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.118191

Keywords

SRC poplar; Lignocellulosic biomass; Thermogravimetry; Pyrolysis kinetics; Non-isothermal methods; Fixed bed pyrolysis

Funding

  1. FCT [UID/ECI/04028/2019]
  2. IDMEC, under LAETA [FCT UIDB/50022/2020]

Ask authors/readers for more resources

Woody biomass can be converted into green fuels by advanced conversion technologies such as gasification and pyrolysis. Due to the complexity of woody biomass, the thermochemical decomposition mechanisms are complex and the knowledge of pyrolysis kinetics is mandatory for optimization of the process and reactor design of commercial scale biorefineries. Pyrolysis kinetics of short rotation coppice (SRC) poplar biomass (nine different clones) was studied using non-isothermal thermogravimetry. By using differential thermogravimetry data, obtained for heating rates of 10-50 K/min, the Kissinger model-free methodology showed activation energies in the range 108-320 kJ/mol, similar to those reported in the literature for cellulose pyrolysis. Isoconversional approaches of Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) obtained similar values of activation energy (81-301 kJ/mol and 90-306 kJ/mol, respectively. The kinetics parameters obtained by the FWO and KAS methods were higher than data reported in the literature for other biomasses, and a correlation between activation energy and the lignin content of the biomass samples was found. The pyrolysis activation energy seems to have no significant effect on the pyrolysis product yields, probably because, under the tested conditions (fixed bed reactor, 773 K), pyrolysis was controlled by mass and/or heat transfer limitations instead of kinetics control. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available