4.5 Review

Review of Formation and Gas Characteristics in Shale Gas Reservoirs

Journal

ENERGIES
Volume 13, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/en13205427

Keywords

shale gas reservoir; geology; Gibbs excess adsorption; supercritical adsorption; gas viscosity

Categories

Funding

  1. National Natural Science Foundation of China [51874251, 51704247]
  2. Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance

Ask authors/readers for more resources

An accurate understanding of formation and gas properties is crucial to the efficient development of shale gas resources. As one kind of unconventional energy, shale gas shows significant differences from conventional energy ones in terms of gas accumulation processes, pore structure characteristics, gas storage forms, physical parameters, and reservoir production modes. Traditional experimental techniques could not satisfy the need to capture the microscopic characteristics of pores and throats in shale plays. In this review, the uniqueness of shale gas reservoirs is elaborated from the perspective of: (1) geological and pore structural characteristics, (2) adsorption/desorption laws, and (3) differences in properties between the adsorbed gas and free gas. As to the first aspect, the mineral composition and organic geochemical characteristics of shale samples from the Longmaxi Formation, Sichuan Basin, China were measured and analyzed based on the experimental results. Principles of different methods to test pore size distribution in shale formations are introduced, after which the results of pore size distribution of samples from the Longmaxi shale are given. Based on the geological understanding of shale formations, three different types of shale gas and respective modeling methods are reviewed. Afterwards, the conventional adsorption models, Gibbs excess adsorption behaviors, and supercritical adsorption characteristics, as well as their applicability to engineering problems, are introduced. Finally, six methods of calculating virtual saturated vapor pressure, seven methods of giving adsorbed gas density, and 12 methods of calculating gas viscosity in different pressure and temperature conditions are collected and compared, with the recommended methods given after a comparison.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available