4.5 Article

Projecting the Price of Lithium-Ion NMC Battery Packs Using a Multifactor Learning Curve Model

Journal

ENERGIES
Volume 13, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/en13205276

Keywords

lithium-ion NMC battery; battery prices; multifactor learning curve

Categories

Funding

  1. University of the Philippines Office of the Vice-President for Academic A ffairs (UP OVPAA)
  2. Senate Committee on Energy

Ask authors/readers for more resources

Renewable energy (RE) utilization is expected to increase in the coming years due to its decreasing costs and the mounting socio-political pressure to decarbonize the world's energy systems. On the other hand, lithium-ion (Li-ion) batteries are on track to hit the target 100 USD/kWh price in the next decade due to economy of scale and manufacturing process improvements, evident in the rise in Li-ion gigafactories. The forecast of RE and Li-ion technology costs is important for planning RE integration into existing energy systems. Previous cost predictions on Li-ion batteries were conducted using conventional learning curve models based on a single factor, such as either installed capacity or innovation activity. A two-stage learning curve model was recently investigated wherein mineral costs were taken as a factor for material cost to set the floor price, and material cost was a major factor for the battery pack price. However, these models resulted in the overestimation of future prices. In this work, the future prices of Li-ion nickel manganese cobalt oxide (NMC) battery packs - a battery chemistry of choice in the electric vehicle and stationary grid storage markets - were projected up to year 2025 using multi-factor learning curve models. Among the generated models, the two-factor learning curve model has the most realistic and statistically sound results having learning rates of 21.18% for battery demand and 3.0% for innovation. By year 2024, the projected price would fall below the 100 USD/kWh industry benchmark battery pack price, consistent with most market research predictions. Techno-economic case studies on the microgrid applications of the forecasted prices of Li-ion NMC batteries were conducted. Results showed that the decrease in future prices of Li-ion NMC batteries would make 2020 and 2023 the best years to start investing in an optimum (solar photovoltaic + wind + diesel generator + Li-ion NMC) and 100% RE (solar photovoltaic + wind + Li-ion NMC) off-grid energy system, respectively. A hybrid grid-tied (solar photovoltaic + grid + Li-ion NMC) configuration is the best grid-tied energy system under the current net metering policy, with 2020 being the best year to deploy the investment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available