4.6 Article

Theoretical analysis of doped graphene as cathode catalyst in Li-O2 and Na-O2 batteries - the impact of the computational scheme

Journal

ELECTROCHIMICA ACTA
Volume 354, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2020.136735

Keywords

Graphene; Doped graphene; Metal-air batteries; Oxygen reduction reaction; Modelling

Funding

  1. Serbian Ministry of Education, Science and Technological Development [451-03-68/2020-14/200146]
  2. NATO Science for Peace and Security Programme [G5729]
  3. Serbian Academy of Sciences and Arts
  4. Swedish Research Council [2014-5993]
  5. Carl Tryggers Foundation for Scientific Research, Sweden [18:177]

Ask authors/readers for more resources

Understanding the reactions in M-O-2 cells (M = Li or Na) is of great importance for further advancement of this promising technology. Computational modelling can be helpful along this way, but an adequate approach is needed to model such complex systems. We propose a new scheme for modelling processes in M-O-2 cells, where reference energies are obtained from high-level theory, CCSD(T), while the interactions of reaction intermediates with catalyst surfaces are extracted from computationally less expensive DFT. The approach is demonstrated for the case of graphene-based surfaces as model catalysts in Li-O-2 and Na-O-2 cells using the minimum viable mechanism. B-doped graphene was identified as the best catalyst amongst considered surfaces, while pristine graphene performs poorly. Moreover, we show that the inclusion of dispersion corrections for DFT has a significant impact on calculated discharge and charge potentials and suggests that long-range dispersion interactions should always be considered when graphene-based materials are modelled as electrocatalysts. Finally, we offer general guidelines for designing new ORR catalysts for M-O-2 cells in terms of the optimization of the interactions of catalyst surface with reaction intermediates. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available