4.3 Article Proceedings Paper

DNA Methylation and Genetic Aberrations in Gastric Cancer

Journal

DIGESTION
Volume 102, Issue 1, Pages 25-32

Publisher

KARGER
DOI: 10.1159/000511243

Keywords

Gastric cancer; Epigenetics; DNA methylation; Epstein-Barr virus; Helicobacter pylori

Ask authors/readers for more resources

Gastric cancer is a pathologically and molecularly heterogeneous disease with DNA hypermethylation playing an important role. Comprehensive DNA methylation analyses have revealed multiple methylation patterns, allowing gastric cancer to be classified into different molecular subgroups. The frequency and targets of genetic aberrations vary depending on the molecular subgroup.
Background: Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. GC is a pathologically and molecularly heterogeneous disease. DNA hypermethylation in promoter CpG islands causes silencing of tumor-suppressor genes and thus contributes to gastric carcinogenesis. In addition, various molecular aberrations, including aberrant chromatin structures, gene mutations, structural variants, and somatic copy number alterations, are involved in gastric carcinogenesis. Summary: Comprehensive DNA methylation analyses revealed multiple DNA methylation patterns in GCs and classified GC into distinct molecular subgroups: extremely high-methylation epigenotype uniquely observed in GC associated with Epstein-Barr virus (EBV), high-methylation epigenotype associated with microsatellite instability (MSI), and low-methylation epigenotype. In The Cancer Genome Atlas classification, EBV and MSI are extracted as independent subgroups of GC, whereas the remaining GCs are categorized into genomically stable (GS) and chromosomal instability (CIN) subgroups. EBV-positive GC, exhibiting the most extreme DNA hypermethylation in the whole human malignancies, frequently shows CDKN2A silencing, PIK3CA mutations, PD-L1/2 overexpression, and lack of TP53 mutations. MSI, exhibiting high DNA methylation, often has MLH1 silencing and abundant gene mutations. GS is generally a diffuse-type GC and frequently shows CDH1/RHOA mutations or CLDN18-ARHGAP fusion. CIN is generally an intestinal-type GC and frequently has TP53 mutations and genomic amplification of receptor tyrosine kinases. Key Messages: The frequency and targets of genetic aberrations vary depending on the epigenotype. Aberrations in the genome and epigenome are expected to synergistically interact and contribute to gastric carcinogenesis and comprehensive analyses of those in GCs may help elucidate the mechanism of carcinogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available