4.7 Article

Studies on the size effects of nano-TiO2 on Portland cement hydration with different water to solid ratios

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 259, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2020.120390

Keywords

Cement hydration; Nano-TiO2; Size effect; Compressive strength; Water to solid ratio

Funding

  1. National Key R&D Program of China [2017YFB0310002]
  2. Natural Science Foundation of China [51708290]
  3. Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province

Ask authors/readers for more resources

The effects of using different sizes of nano-TiO2 (NT) on the hydration characteristics of Portland cement with different water to solid ratios (w/s, solid: cement + NT) were investigated in this study. Cement was partially replaced by NT with two sizes, 5 nm and 25 nm, at weight fractions of 0, 0.5%, 1.0%, 1.5% and 2.0%. The compressive strength, hydration products, hydration degree, pore structures and morphologies of the modified cement pastes were systematically evaluated. The experimental results showed that a suitable NT content effectively enhanced the compressive strength of the cement paste, and this enhancement directly depended on the NT particle size. Cement paste mixed with 5-nm NT resulted in a higher compressive strength than 25-nm NT, irrespective of the w/s ratio. The cement paste with a maximum compressive strength at all the curing ages was obtained using a 0.3 w/s ratio and 0.5 wt% of 5-nm NT (which were therefore identified as the optimal NT parameters). The compressive strength of this cement paste increased by 41.4%, 15.9%, 18.7% and 24.35% at 1, 3, 7 and 28 days, respectively, compared to a control sample. For both NT sizes, the w/s ratio and the NT content controlled the compressive strength development of the paste during the early and late ages, respectively. Compared with 25-nm NT, replacing cement by 5-nm NT within the optimum content range was more effective in accelerating cement hydration, increasing the hydration degree, decreasing the crystal size of Ca(OH)(2), refining the pore structure and densifying the cement paste at the microscale, all of which increased the compressive strength at the macroscale. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available