4.7 Article

Additivity effect on properties of cemented coal fly ash backfill containing water-reducing admixtures

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 267, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2020.121021

Keywords

Cemented backfill; Underground coal mines; Coal fly ash; Water reducing admixtures; Waste disposal; Workability; Compressive strength; Microstructure

Funding

  1. Scientific Research Project Coordination Unit of Karadeniz Technical University (KTU) [891]
  2. Turkish Cement Manufacturers' Association (TCMB)

Ask authors/readers for more resources

This study examines the effect of water-reducing admixtures on the characteristics of Cemented coal fly ash backfill (CCB) materials, showing that they can significantly reduce cement costs, improve properties of hardened backfills, and maintain quality during the entire process of handling CCB. Results demonstrate that the admixtures enhance pumpability, strength, and porosity of CCB samples, making them a viable option for efficient and effective backfilling solutions in mining operations.
Cemented coal fly ash backfill (CCB), a flowable structure of coal fly ash, binding agent and mixing water, has been often employed in mining operations to offer ground support as well as waste disposal solutions. An appropriate CCB mass should have sufficient rheological (e.g., workability) and mechanical (e.g., strength and stability) characteristics. Chemical admixtures are well known to greatly enhance the pumpability and strength properties of cementitious materials. Thus, this work provides the effect of water-reducing admixtures (namely, Sikament MR 50 W and Sikament FFN) on characteristics of CCB materials manufactured at a constant slump value. The role of admixtures in CCB mix is to reduce the cement-related costs, to modify the properties of the hardened backfills, and to ensure the quality of the backfill during mixing, transporting, placing, and curing. These admixtures were used at a dosage of 1% and 2% by weight of anhydrous material on cement. Several laboratory tests including slump, setting time, uniaxial compressive strength, scanning electron microscopy and mercury intrusion porosimetry were undertaken on CCB samples to understand their fresh and hardened performance. Experimental results show that the admixtures used ensure the slump required to deliver CCB at low water/cement ratios, improve short- and long-term backfill strengths up to 33%, and decrease the total porosity of the tested CCB. The findings of this study also show that the admixture use in CCB leads to a significant decrease in the considered cement content and a remarkable increase in the mechanical strength. As a result, understanding the actual fresh and hardened properties of CCB remains crucial for the choice of the greatest acting backfill admixture and for a fruitful change from capable experimental results to the in-situ conditions. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available