4.7 Article

Machine learning aided stochastic reliability analysis of spatially variable slopes

Journal

COMPUTERS AND GEOTECHNICS
Volume 126, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compgeo.2020.103711

Keywords

Machine learning; Stochastic reliability analysis; Spatially variable slopes

Ask authors/readers for more resources

This paper presents machine learning aided stochastic reliability analysis of spatially variable slopes, which significantly reduces the computational efforts and gives a complete statistical description of the factor of safety with promising accuracy compared with traditional methods. Within this framework, a small number of traditional random finite-element simulations are conducted. The samples of the random fields and the calculated factor of safety are, respectively, treated as training input and output data, and are fed into machine learning algorithms to find mathematical models to replace finite-element simulations. Two powerful machine learning algorithms used are the neural networks and the support-vector regression with their associated learning strategies. Several slopes are examined including stratified slopes with 3 or 4 layers described by 4 or 6 random fields. It is found that with 200 to 300 finite-element simulations (finished in about 5 similar to 8 h), the machine learning generated model can predict the factor of safety accurately, and a stochastic analysis of 10(5) samples takes several minutes. However, the same traditional analysis would require hundreds of days of computation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available