4.7 Article

A 3D gradient-enhanced micropolar damage-plasticity approach for modeling quasi-brittle failure of cohesive-frictional materials

Journal

COMPUTERS & STRUCTURES
Volume 239, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compstruc.2020.106332

Keywords

Micropolar continuum; Gradient-enhanced continuum; Continuum damage; Plasticity; Unstable material behavior

Ask authors/readers for more resources

Continuum models based on the combination of the theories of plasticity and damage mechanics pose a powerful framework for representing the highly nonlinear material behavior of cohesive-frictional materials. However, non-associated plastic flow rules for representing the inelastic volumetric expansion of such materials may result in unstable material behavior and, accordingly, strongly mesh-dependent results in finite element simulations. Regularization techniques such as the gradient-enhanced continuum or similar nonlocal approaches, which work well for regularizing mode I failure, are often not sufficient as a remedy. In contrast to the latter, the theory of the micropolar continuum represents a suitable framework for regularizing non-associated plastic flow and shear band dominated failure properly, but it fails to do so for mode I failure. Hence, in the present contribution, a combination of the theories of the micropolar continuum and the gradient-enhanced continuum for regularizing both shear band dominated failure and mode I failure is presented. By incorporating a 3D damage-plasticity model for concrete into the proposed framework, it is demonstrated that the proposed model constitutes a physically sound and numerically stable approach for modeling the nonlinear material behavior of concrete in both the pre-peak and the post-peak regime for a broad variety of loading conditions. (C) 2020 The Author(s). Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available