4.7 Article

Long noncoding RNA Hotair facilitates retinal endothelial cell dysfunction in diabetic retinopathy

Journal

CLINICAL SCIENCE
Volume 134, Issue 17, Pages 2419-2434

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/CS20200694

Keywords

-

Funding

  1. Youth Program of National Natural Science Foundation of China [81700729]

Ask authors/readers for more resources

Background: Retinal endothelial cell (REC) dysfunction induced by diabetes mellitus (DM) is an important pathological step of diabetic retinopathy (DR). Long noncoding RNAs (lncRNAs) have emerged as novel modulators in DR. The present study aimed to investigate the role and mechanism of lncRNA Hotair in regulating DM-induced REC dysfunction. Methods: The retinal vascular preparations and immunohistochemical staining assays were conducted to assess the role of Hotair in retinal vessel impairment in vivo. The EdU, transwell, cell permeability, CHIP, luciferase activity, RIP, RNA pull-down, and Co-IP assays were employed to investigate the underlying mechanism of Hotair-mediated REC dysfunction in vitro. Results: Hotair expression was significantly increased in diabetic retinas and high glucose (HG)-stimulated REC. Hotair knockdown inhibited the proliferation, invasion, migration, and permeability of HG-stimulated REC in vitro and reduced the retinal acellular capillaries and vascular leakage in vivo. Mechanistically, Hotair bound to LSD1 to inhibit VE-cadherin transcription by reducing the H3K4me3 level on its promoter and to facilitate transcription factor HIF1 alpha-mediated transcriptional activation of VEGFA. Furthermore, LSD1 mediated the effects of Hotair on REC function under HG condition. Conclusion: The Hotair exerts its role in DR by binding to LSD1, decreasing VE-cadherin transcription, and increasing VEGFA transcription, leading to REC dysfunction. These findings revealed that Hotair is a potential therapeutic target of DR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available