4.5 Article

Configuration Flipping in Distal Pocket of Multidrug Transporter MexB Impacts the Efflux Inhibitory Mechanism

Journal

CHEMPHYSCHEM
Volume 21, Issue 23, Pages 2516-2524

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cphc.202000759

Keywords

efflux pump; free energy; inhibitors; molecular dynamics; QM; MM

Funding

  1. IIT(ISM) Dhanbad faculty research scheme [RS(122)/2018-19/AC]

Ask authors/readers for more resources

MexAB-OprM efflux pumps, found in Pseudomonas aeruginosa, play a major role in drug resistance by extruding out drugs and antibiotic molecules from cells. Inhibitors are used to cease the potency of the efflux pumps. In this study, in-silico models are used to investigate the nature of the binding pocket of the MexAB-OprM efflux pump. First, we have performed classical molecular dynamics (MD) simulations to shed light on different aspects of protein-inhibitor interaction in the binding pocket of the pump. Using classical MD simulations, quantum mechanics/molecular mechanics (QM/MM), and various types of analyses, it is found that D13-9001 has a higher binding affinity towards the binding pocket compared to D1 and D2; the results are in sync with the experimental dat. Two stable configurations of D13-9001 are discovered inside the distal pocket which could be one of the primary reasons for the greater efficacy of D13-9001. The free energy barrier upon changing one state to another is calculated by employing umbrella sampling method. Finally, F178 is mutated to have the complete picture as it contributes significantly to the binding energy irrespective of the three inhibitors. Our results may help to design a new generation of inhibitors for such an efflux pump.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available