4.7 Article

Degradation of petroleum hydrocarbons in soil via advanced oxidation process using peroxymonosulfate activated by nanoscale zero-valent iron

Journal

CHEMOSPHERE
Volume 270, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128627

Keywords

Diesel; Soil; Peroxymonosulfate (PMS); nZVI; Advanced oxidation process; Reactive oxygen species (ROS)

Funding

  1. National Research Foundation of Korea [NRF-2018R1A2B6006139]
  2. National Research Foundation of Korea [4299990614343] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

This study demonstrates that nZVI can effectively activate PMS to generate ROS for efficient degradation of diesel-contaminated soil. The optimal concentrations of PMS and nZVI were found to be 3% and 0.2%, achieving a degradation efficiency of up to 61.2% in 2 hours.
Recently, the use of nanoscale zero-valent iron (nZVI) for removal of organic contaminants from aqueous and soil system has increased. In this study, we employ nZVI to activate peroxymonosulfate (PMS) for the degradation of total petroleum hydrocarbons (TPHs) in aged diesel-contaminated soil. Upon PMS activation by nZVI, PMS produces more highly reactive oxygen species (ROS) in both aqueous solution and soil compared to other compounds (PMS/Co(II)), as determined by electron paramagnetic resonance spectroscopy. Thus, nZVI is an effective catalyst for PMS activation, leading to the efficient degradation of diesel oil in soil compared to other catalysts and oxidants. The optimal concentrations of PMS and nZVI were found to be 3 and 0.2%, respectively, showing the best degradation efficiency (61.2% in 2 h). The observed TPH degradationwas retarded (up to 19.1-37% efficiency) in the presence of radical scavengers, such as tert-butyl alcohol, nitrobenzene, ethyl alcohol, and isopropyl alcohol. These results also demonstrate that ROS (hydroxyl and sulfate free radicals) are generated via PMS activation by nZVI. Moreover, more than 96% of TPH can be degraded by sequential applications of PMS/nZVI. Factors affecting TPH degradation, namely PMS/nZVI concentration, soil:solution ratio, soil pH, activators, and oxidants, are also analyzed. The results demonstrate that TPH is degraded to below the residential soil quality limit using PMS/nZVI based on the advanced oxidation process (AOP), which is therefore an effective option for chemical remediation of diesel-contaminated soils over a wide range of pH. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available