4.7 Article

Exposure of Lemna minor L. to gentian violet or Congo red is associated with changes in the biosynthesis pathway of biogenic amines

Journal

CHEMOSPHERE
Volume 254, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.126752

Keywords

Textile dyes; Aquatic plant; Biogenic amines; Decarboxylase activity; Phytotoxicity; Photosynthetic pigments

Funding

  1. [010/RID/2018/19]

Ask authors/readers for more resources

In the literature, there is a lack of data on the effect of gentian violet (GV) and congo red (CR) dyes on the biosynthesis pathway of biogenic amines (BAs) in Lemna minor L. (common duckweed). This plant species is an important link in the food chain. Both dyes inhibited growth, biomass yield and the biosynthesis of chlorophyll a in common duckweed. The predicted toxic units demonstrated that GV had a more toxic effect on the growth rate and biomass yield of common duckweed than CR. Decarboxylase activity in the biosynthesis of BAs in common duckweed is also a useful indicator for evaluating the toxicity of both dyes. Gentian violet also exerted more phytotoxic effects on the analyzed biochemical features of common duckweed because it changed the putrescine (Put) biosynthesis pathway, increased tyramine content 1.6 fold, inhibited the activity of S-adenosylmethionine decarboxylase by 40% and the activity of ornithine decarboxylase (ODC) by 80%. Tyrosine decarboxylase (TDC) was most active in plants exposed to the highest concentration of GV. Similarly to control plants, in common duckweed exposed to CR, Put was synthesized from ornithine; however, spermidine content was 86% higher, Put content was 51% lower, and ODC activity was 86% lower. (C) 2020 The Authors. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available