4.8 Article

Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials

Journal

CHEMISTRY OF MATERIALS
Volume 32, Issue 18, Pages 7822-7831

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.0c02468

Keywords

-

Ask authors/readers for more resources

Nanoporous materials have attracted significant interest as an emerging platform for adsorption-related applications. The high-throughput computational screening became a standard technique to access the performance of thousands of candidates, but its accuracy is highly dependent on a partial charge assignment method. In this study, we propose a machine learning model that can reconcile the benefits of two main approaches: the high accuracy of density-derived electrostatic and chemical charge (DDEC) method and the scalability of charge equilibration (Qeq) method. The mean absolute deviation of predicted partial charges from the original DDEC counterparts achieves an excellent level of 0.01 e. The model, initially designed for metal-organic frameworks (MOFs), is also capable of assigning charges to another class of nanoporous materials, covalent organic frameworks, with acceptable accuracy. Adsorption properties of carbon dioxide, calculated by means of machine learning-derived charges, are consistent with the reference data obtained with DDEC charges. We also provide the first virtually complete set of partial charges for the publicly available subset of the Computation-Ready, Experimental (CoRE) MOF 2019 database.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available