4.7 Article

Study on the optimal stochastic resonance of different bistable potential models based on output saturation characteristic and application

Journal

CHAOS SOLITONS & FRACTALS
Volume 139, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chaos.2020.110098

Keywords

Stochastic resonance; Unsaturation capability; Signal-to-noise ratio; Potential structure; Particle swarm optimization

Funding

  1. National Natural Science Foundation of China [61973262, 51875500]
  2. Natural Science Foundation of Hebei Province [E2019203146]
  3. Project of introducing overseas talents in Hebei Province [C20190371]

Ask authors/readers for more resources

Stochastic resonance (SR) is a kind of physical phenomenon that makes use of noise energy to enhance the signal, but the problem of output saturation generally exists in classcial bistable stochastic resonance (CBSR). To overcome this shortcoming, a few unsaturation models have been established. In view of this, the present study is committed to analyzing and comparing the unsaturation ability of different models more systematically and comprehensively. Firstly, several new piecewise bistable potential models are constructed to supplement the existing unsaturation models and their unsaturation is proved. Then, the higher output signal-to-noise ratio (SNR) of simulated signals shows that the models with linear sides have better unsaturation characteristic and frequency adaptability. Finally, the output SNR and amplitude are chosen as the comprehensive index for evaluating the enhancement performance. Each mod el is applied to process analog and fault signals. The results show that unsaturation capability of piecewise linear bistable stochastic resonance system is best, which is demonstrated again from the optimal output SNR of particle swarm optimization (PSO) algorithm. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available