4.5 Article

Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations

Journal

COMPUTATIONAL MATERIALS SCIENCE
Volume 117, Issue -, Pages 437-444

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2016.02.022

Keywords

Crystal plasticity; Microstructure; Finite elements; Variability; Tantalum

Funding

  1. Laboratory Directed Research and Development program at Sandia National Laboratories
  2. U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

Ask authors/readers for more resources

In this work, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions. Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2-7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress-strain response of polycrystals that can be attributed to the grain-scale microstructural variability. This work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available