4.6 Article

microRNA-451a promoter methylation regulated by DNMT3B expedites bladder cancer development via the EPHA2/PI3K/AKT axis

Journal

BMC CANCER
Volume 20, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12885-020-07523-8

Keywords

Bladder cancer; DNMT3B; microRNA-451a; EPHA2; The PI3K; AKT signaling

Categories

Funding

  1. Natural Science Research Projects of Universities of Anhui Province [KJ2019A0308]
  2. National Natural Science Foundation of China [81702495]
  3. Anhui Natural Science Foundation [1808085QH279]

Ask authors/readers for more resources

BackgroundThe downregulation of microRNA (miR)-451a has been reported in bladder cancer (BCa) tissues. Herein, we elucidated the role of miR-451a in BCa with the involvement of DNA methyltransferase 3B (DNMT3B).MethodsWe first screened the differentially expressed miRNAs from the serum of 12 BCa patients and 10 healthy controls in the BCa database GSE113486. Subsequently, we detected miR-451a expression and CpG island methylation of the promoter in BCa cells T24 and 5637 with DNMT3B knockdown. The downstream mRNAs of miR-451a were predicted by bioinformatics and KEGG enrichment analysis. Afterwards, the expression patterns of DNMT3B, miR-451a and erythropoietin-producing hepatocellular receptor tyrosine kinase class A2 (EPHA2) were altered in BCa cells to test the ability of cell proliferation, apoptosis, migration as well as invasion. Finally, the effect of miR-451a and DNMT3B was evaluated in vivo.ResultsmiR-451a was significantly reduced in serum of BCa patients and cell lines. Moreover, the expression of DNMT3B in BCa cells was significantly increased, thus promoting methylation of the miR-451a promoter, resulting in miR-451a inhibition. Additionally, we found that miR-451a targeted and negatively regulated EPHA2, while EPHA2 could activate the PI3K/AKT signaling, driving BCa cell growth and metastasis.ConclusionsOur study proposed and demonstrated that miR-451a downregulation mediated by DNMT3B is critical for proliferation, migration, and invasion of BCa, which may be beneficial for developing more effective therapies against BCa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available