4.8 Article

Long-term responses of antibiotic resistance genes under high concentration of enrofloxacin, sulfadiazine and triclosan in aerobic granular sludge system

Journal

BIORESOURCE TECHNOLOGY
Volume 312, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2020.123567

Keywords

Antibiotic resistance genes; Aerobic granular sludge; High level antibiotics; Triclosan; Horizontal gene transfer

Funding

  1. Beijing Municipal Science and Technology Commission Project [Z181100005518002]
  2. National Science and Technology Major Project [2017ZX07103-003]
  3. Beijing Natural Science Foundation [8202006]
  4. National Natural Science Foundation of China [51578015]

Ask authors/readers for more resources

It is worth to reveal the long-term responses of antibiotic resistance genes (ARGs) in aerobic granular sludge (AGS) system exposed to high level enrofloxacin (ENR), sulfadiazine (SDZ) and triclosan (TCS). In present study, ppm level ENR, SDZ and TCS were added into three AGS reactors, respectively. ARGs in ENR and SDZ systems showed trends of increasing first and then decreasing, which were contrary to that in TCS system. 80%, 56% and 40% ARGs in ENR, SDZ and TCS systems, respectively, were enriched after loading, but several ARGs still kept high enrichment values after the withdrawn of loadings. The dominant bacteria in ENR (Flavobacterium), SDZ (Candidatus_Competibacter and Defluviicoccus) and TCS (Defluviicoccus) systems might contribute to the reductions of ARGs. IntI1 altered the overall ARGs profiles through horizontal gene transfer. The interactions of bacterial communities and environmental factors might be responsible for the different ARGs patterns in ENR, SDZ and TCS systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available