4.8 Article

Facilitating sludge granulation and favoring glycogen accumulating organisms by increased salinity in an anaerobic/micro-aerobic simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) process

Journal

BIORESOURCE TECHNOLOGY
Volume 313, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2020.123698

Keywords

Salinity Aerobic granular sludge; Partial nitrification; GAOs-PAOs competition; Simultaneous nitrogen and phosphorus; removal

Funding

  1. Major Science and Technology Program for Water Pollution Control and Treatment [2017ZX07102-003]
  2. National Natural Science Foundation of China [21806006]
  3. Funding Projects of Beijing Municipal Commission of Education

Ask authors/readers for more resources

This study used salinity (0.5 wt%, 0.75 wt%) to accelerate the formation of ammonia oxidizing bacteria -(AOB)enriched aerobic granular sludge in a lab-scale anaerobic/micro-aerobic simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) reactor. Results confirmed that the average granule diameter increased from 298.7 to 425.4 mu m after 45 days of salinity stress even with low dissolved oxygen. Extracellular polymeric substances increased from 149.5 to 387.7 mg/g VSS after salinity (0.75 wt%) treatment, in turn accelerating granulation. Partial nitrification was maintained under the salinity condition due to the relative high activity and abundance of AOB, and the observed nitrite accumulation ratio averaged 98.9%. Salinity favored glycogen-accumulating organisms over polyphosphate-accumulating organisms (PAOs)/denitrifyingPAOs, with the abundance of Candidatus_Competibacter increasing from 4.86% to 15.34% and the simultaneous partial nitrification-denitrification efficiency increasing from 74.4% to 91.1%, promoting N-removal potential. The P-removal performance was good under 0.5 wt% salinity but was inhibited under 0.75 wt% salinity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available