4.0 Article

Numerical model of formation of a 3-D strike-slip fault system

Journal

COMPTES RENDUS GEOSCIENCE
Volume 348, Issue 1, Pages 61-69

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.crte.2015.09.008

Keywords

Faulting; Strike-slip; Riedel shear; Fault evolution; Finite-difference modeling; Damage

Ask authors/readers for more resources

The initiation and the initial evolution of a strike-slip fault are modeled within an elastoplasticity constitutive framework taking into account the evolution of the hardening modulus with inelastic straining. The initial and boundary conditions are similar to those of the Riedel shear experiment. The models first deform purely elastically. Then damage (inelastic deformation) starts at the model surface. The damage zone propagates both normal to the forming fault zone and downwards. Finally, it affects the whole layer thickness, forming flower-like structure in cross-section. At a certain stage, a dense set of parallel Riedel shears forms at shallow depth. A few of these propagate both laterally and vertically, while others die. The faults first propagate in-plane, but then rapidly change direction to make a larger angle with the shear axis. New fault segments form as well, resulting in complex 3-D fault zone architecture. Different fault segments accommodate strike-slip and normal displacements, which results in the formation of valleys and rotations along the fault system. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available