4.5 Article

Extra-ribosomal functions of Mtb RpsB in imparting stress resilience and drug tolerance to mycobacteria

Journal

BIOCHIMIE
Volume 177, Issue -, Pages 87-97

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biochi.2020.08.007

Keywords

Ribosome; Extra-ribosomal; Moonlighting; Drug tolerance; Stress tolerant; Mycobacterium; Redox homeostasis

Funding

  1. ICMR
  2. CSIR
  3. Department of Biotechnology (Govt of India)
  4. CSIR-CDRI
  5. Department of Science and Technology (DST), Govt. of India [INT/Sin/P08/2015]
  6. THSTI
  7. UGC fellowship

Ask authors/readers for more resources

Emerging observations suggest that ribosomal proteins (RPs) play important extra-ribosomal roles in maintenance of cellular homeostasis. However, the mechanistic insights into these processes have not been extensively explored, especially in pathogenic bacteria. Here, we present our findings on potential extra-ribosomal functions of Mycobacterium tuberculosis (Mtb) RPs. We observed that Mtb RpsB and RpsQ are differentially localized to cell wall fraction in M. tuberculosis (H37Rv), while their M. smegmatis (Msm) homologs are primarily cytosolic. Cellular fractionation of ectopically expressed Mtb RPs in surrogate host (M. smegmatis) also shows their association with cell membrane/cell wall without any gross changes in cell morphology. M. smegmatis expressing Mtb RpsB exhibited altered redox homeostasis, decreased drug-induced ROS, reduced cell wall permeability and increased tolerance to various proteotoxic stress (oxidative stress, SDS and starvation). Mtb RpsB expression was also associated with increased resistance specifically towards Isoniazid, Ethionamide and Streptomycin. The enhanced drug tolerance was specific to Mtb RpsB and not observed upon ectopic expression of M. smegmatis homolog (Msm RpsB). Interestingly, C-terminus deletion in Mtb RpsB affected its localization and reversed the stress-resilient phenotypes. We also observed that M. tuberculosis (H37Rv) with upregulated RpsB levels had higher intracellular survival in macrophage. All these observations hint towards existence of moonlighting roles of Mtb RpsB in imparting stress resilience to mycobacteria. This work open avenues for further exploration of alternative pathways associated with fitness and drug tolerance in mycobacteria. (C) 2020 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available