4.5 Article

A Multimodal Study of the Contributions of Conduction Velocity to the Auditory Evoked Neuromagnetic Response: Anomalies in Autism Spectrum Disorder

Journal

AUTISM RESEARCH
Volume 13, Issue 10, Pages 1730-1745

Publisher

WILEY
DOI: 10.1002/aur.2369

Keywords

autism spectrum disorder; conduction velocity; diffusion MRI; magnetoencephalography; MR spectroscopy; multimodal imaging

Funding

  1. NIH [R01-DC008871, U54-HD086984, R01-HD073258, R01MH107506, R21-MH109158, R21-MH110869]
  2. DoD [W81XWH-15-1-0354]

Ask authors/readers for more resources

This multimodal imaging study used magnetoencephalography, diffusion magnetic resonance imaging (MRI), and gamma-aminobutyric acid (GABA) magnetic resonance spectroscopy (MRS) to identify and contrast the multiple physiological mechanisms associated with auditory processing efficiency in typically developing (TD) children and children with autism spectrum disorder (ASD). Efficient transmission of auditory input between the ear and auditory cortex is necessary for rapid encoding of auditory sensory information. It was hypothesized that the M50 auditory evoked response latency would be modulated by white matter microstructure (indexed by diffusion MRI) and by tonic inhibition (indexed by GABA MRS). Participants were 77 children diagnosed with ASD and 40 TD controls aged 7-17 years. A model of M50 latency with auditory radiation fractional anisotropy and age as independent variables was able to predict 52% of M50 latency variance in TD children, but only 12% of variance in ASD. The ASD group exhibited altered patterns of M50 latency modulation characterized by both higher variance and deviation from the expected structure-function relationship established with the TD group. The TD M50 latency model was used to identify a subpopulation of ASD who are significant outliers to the TD model. The ASD outlier group exhibited unexpectedly long M50 latencies in conjunction with significantly lower GABA levels. These findings indicate the dependence of electrophysiologic sensory response latency on underlying microstructure (white matter) and neurochemistry (synaptic activity). This study demonstrates the use of biologically based measures to stratify ASD according to their brain-level building blocks as an alternative to their behavioral phenotype. Lay Summary Children with ASD often have a slower brain response when hearing sounds. This study used multiple brain imaging techniques to examine the structural and neurochemical factors which control the brain's response time to auditory tones in children with ASD and TD children. The relationship between brain imaging measures and brain response time was also used to identify ASD subgroups.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available