4.7 Article

CO oxidation on Pt based binary and ternary alloy nanocatalysts: Reaction pathways and electronic descriptor

Journal

APPLIED SURFACE SCIENCE
Volume 528, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2020.146964

Keywords

Adsorption; Oxidation; Heterogeneous catalyst; Metal catalyst; Descriptor; DFT

Funding

  1. Science and Engineering Research Board (SERB), India [EMR/2016/004689]
  2. SRM Institute of Science and Technology

Ask authors/readers for more resources

The design of stable, highly active heterogeneous nanocatalyst with no CO poisoning is a challenge for the catalytic converter industry. This can be achieved by defining electronic descriptor and by understanding the bonding mechanism. We present results using density functional theory to design optimal metal nanoalloy catalysts for CO oxidation. The adsorption configuration of O-2 and O on different active sites is studied in detail to find the efficient reaction pathway for CO oxidation. The varying extent of back-donation of charge is found to be the factor deciding the CO tolerance. The trade-off between the activity and CO tolerance signifies that there is an upper limit for alloying Pt with Ni and Co. An electronic descriptor based on the occupancy of the d orbital and d band center of the host atom is defined to explain the site dependent activity of nanocatalysts. The role of underneath carbon surface on the CO oxidation activity of metal sites and CO poisoning is described.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available