4.6 Article

Magnetic order in 3D topological insulators-Wishful thinking or gateway to emergent quantum effects?

Journal

APPLIED PHYSICS LETTERS
Volume 117, Issue 15, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/5.0027987

Keywords

-

Funding

  1. European Union's Horizon 2020 research and innovation program under the Marie Skodowska-Curie Grant [796925]
  2. Marie Curie Actions (MSCA) [796925] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

Three-dimensional topological insulators (TIs) are a perfectly tuned quantum-mechanical machinery in which counterpropagating and oppositely spin-polarized conduction channels balance each other on the surface of the material. This topological surface state crosses the bandgap of the TI and lives at the interface between the topological and a trivial material, such as vacuum. Despite its balanced perfection, it is rather useless for any practical applications. Instead, it takes the breaking of time-reversal symmetry (TRS) and the appearance of an exchange gap to unlock hidden quantum states. The quantum anomalous Hall effect, which has first been observed in Cr-doped (Sb,Bi)(2)Te-3, is an example of such a state in which two edge channels are formed at zero field, crossing the magnetic exchange gap. The breaking of TRS can be achieved by magnetic doping of the TI with transition metal or rare earth ions, modulation doping to keep the electronically active channel impurity free, or proximity coupling to a magnetically ordered layer or substrate in heterostructures or superlattices. We review the challenges these approaches are facing in the famous 3D TI (Sb,Bi)(2)(Se,Te)(3) family and try to answer the question whether these materials can live up to the hype surrounding them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available