4.8 Article

Managing Locally Excited and Charge-Transfer Triplet States to Facilitate Up-Conversion in Red TADF Emitters That Are Available for Both Vacuum- and Solution-Processes

Journal

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Volume 60, Issue 5, Pages 2478-2484

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202012070

Keywords

charge-transfer triplet state; locally excited triplet state; solution-processed OLED; thermally activated delayed fluorescence; vacuum-deposited OLED

Funding

  1. National Key Research & Development Program of China [2016YFB0401002]
  2. National Natural Science Foundation of China [51533005, 51821002]
  3. China Postdoctoral Science Foundation [2018M640517, 2018M642307]
  4. Collaborative Innovation Center of Suzhou Nano Science Technology
  5. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  6. 111 Project
  7. Joint International Research Laboratory of Carbon-Based Functional Materials and Devices

Ask authors/readers for more resources

Developing red thermally activated delayed fluorescence (TADF) emitters for high-performance OLEDs is a challenge, but the newly designed and synthesized red TADF emitters in this study show promising results with significant efficiency enhancements. Among them, oDTBPZ-DPXZ demonstrates efficient TADF feature and high exciton utilization, achieving excellent external quantum efficiency in both vacuum-processed and solution-processed OLEDs. This work provides an effective strategy for designing red TADF molecules by managing energy level alignments to enhance exciton harvesting.
Developing red thermally activated delayed fluorescence (TADF) emitters for high-performance OLEDs is still facing great challenge. Herein, three red TADF emitters, pDBBPZ-DPXZ, pDTBPZ-DPXZ, and oDTBPZ-DPXZ, are designed and synthesized with same donor-acceptor (D-A) backbone with different peripheral groups attaching on the A moieties. Their lowest triplet states change from locally excited to charge transfer character leading to significantly enhance reverse intersystem crossing process. In particular, oDTBPZ-DPXZ exhibits efficient TADF feature and exciton utilization. It not only achieves an external quantum efficiency (EQE) of 20.1 % in red vacuum-processed OLED, but also realize a high EQE of 18.5 % in a solution-processed OLED, which is among the best results in solution-processed red TADF OLEDs. This work provides an effective strategy for designing red TADF molecules by managing energy level alignments to facilitate the up-conversion process and thus enhance exciton harvesting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available