4.7 Article

Sample preparation of bone tissue for MALDI-MSI for forensic and (pre)clinical applications

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 413, Issue 10, Pages 2683-2694

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-020-02920-1

Keywords

Bone tissue; Sample preparation; MALDI; Mass spectrometry imaging

Funding

  1. TU Wien (TUW)
  2. doctoral program MEIBio (Molecular and Elemental Imaging in Life Sciences)
  3. STSMs from COST [CA 16101 MULTI-FORESEE]
  4. Dutch Province of Limburg through the LINK program
  5. ZonMW [446001027]

Ask authors/readers for more resources

In this study, the sample preparation protocol for undecalcified bone samples was optimized for targeted and untargeted applications in forensic and preclinical research. The combination of gelatin and carboxymethyl cellulose (CMC) was found to best support the bone tissue during sectioning. Different cutting methods were successfully applied to rat, mouse, and human bone samples, demonstrating the versatility of the developed sectioning method. The detection of targeted substances (methadone and EDDP) and untargeted substances (unknown lipids) was achieved using specific matrix materials, showcasing the potential for future forensic and preclinical investigations.
In the past decades, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been applied to a broad range of biological samples, e.g., forensics and preclinical samples. The use of MALDI-MSI for the analysis of bone tissue has been limited due to the insulating properties of the material but more importantly the absence of a proper sample preparation protocol for undecalcified bone tissue. Undecalcified sections are preferred to retain sample integrity as much as possible or to study the tissue-bone bio interface in particular. Here, we optimized the sample preparation protocol of undecalcified bone samples, aimed at both targeted and untargeted applications for forensic and preclinical applications, respectively. Different concentrations of gelatin and carboxymethyl cellulose (CMC) were tested as embedding materials. The composition of 20% gelatin and 7.5% CMC showed to support the tissue best while sectioning. Bone tissue has to be sectioned with a tungsten carbide knife in a longitudinal fashion, while the sections need to be supported with double-sided tapes to maintain the morphology of the tissue. The developed sectioning method was shown to be applicable on rat and mouse as well as human bone samples. Targeted (methadone and EDDP) as well as untargeted (unknown lipids) detection was demonstrated. DHB proved to be the most suitable matrix for the detection of methadone and EDDP in positive ion mode. The limit of detection (LOD) is estimated to approximately 50 pg/spot on bone tissue. The protocol was successfully applied to detect the presence of methadone and EDDP in a dosed rat femur and a dosed human clavicle. The best matrices for the untargeted detection of unknown lipids in mouse hind legs in positive ion mode were CHCA and DHB based on the number of tissue-specific peaks and signal-to-noise ratios. The developed and optimized sample preparation method, applicable on animal and human bones, opens the door for future forensic and (pre)clinical investigations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available