4.7 Article

Aptamer-based electrochemical biosensing strategy toward human non-small cell lung cancer using polyacrylonitrile/polypyrrole nanofibers

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 412, Issue 28, Pages 7851-7860

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-020-02916-x

Keywords

Aptasensor; Early cancer diagnosis; Non-small cell lung cancer; Electrochemical impedance spectrometry; Nanofibers

Funding

  1. Ege University, Graduate School of Natural and Applied Science [18/FBE/001]

Ask authors/readers for more resources

In the present study, a sensitive electrochemical aptamer-based biosensing strategy for human non-small cell lung cancer (NSCLC) detection was proposed using nanofiber-modified disposable pencil graphite electrodes (PGEs). The composite nanofiber was comprised of polyacrylonitrile (PAN) and polypyrrole (PPy) polymers, and fabrication of the nanofibers was accomplished using electrospinning process onto PGEs. Development of the nanofibers was confirmed using scanning electron microscopy (SEM). The high-affinity 5 '-aminohexyl-linked aptamer was immobilized onto a PAN/PPy composite nanofiber-modified sensor surface via covalent bonding strategy. After incubation with NSCLC living cells (A549 cell line) at 37.5 degrees C, the recognition between aptamer and target cells was monitored by electrochemical impedance spectroscopy (EIS). The selectivity of the aptasensor was evaluated using nonspecific human cervical cancer cells (HeLa) and a nonspecific aptamer sequence. The proposed electrochemical aptasensor showed high sensitivity toward A549 cells with a detection limit of 1.2 x 10(3)cells/mL. The results indicate that our label-free electrochemical aptasensor has great potential in the design of aptasensors for the diagnostics of other types of cancer cells with broad detection capability in clinical analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available