4.7 Article

A hybrid numerical and imaging approach for characterizing defects in composite structures

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesa.2015.10.027

Keywords

Polymer-matrix composites (PMCs); Defects; Damage mechanics; Optical microscopy

Ask authors/readers for more resources

In this study, a hybrid approach coupling hyperspectral near infrared imaging with a progressive finite element method is proposed for characterization of the elastic and failure response of composites with non-uniform variations of the wrinkles profile through the thickness and across the structure dimensions. In this approach, hyperspectral near infrared spectroscopy is used to create a 3D profile of the surface resin pockets with the capability of measuring resin thickness from approximately 125 to 2500 gm. These resin pockets are directly correlated to underlying ply level wrinkling as confirmed by optical microscopy. The 3D mapped resin plane obtained from the hyperspectral imaging is used to morph a ply-by-ply finite element model of a carbon-fiber/epoxy resin laminated plate using a progressive damage failure methodology. The results show the capability of the hybrid method to predict the structural response in laminated composites containing spatially distributed and non-uniform ply-level wrinkling. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available