4.7 Article

Hierarchical poly(p-phenylene benzobisoxazole)/graphene oxide reinforcement with multifunctional and biomimic middle layer

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesa.2016.05.017

Keywords

Fibers; Polymer-matrix composites (PMCs); Interface/interphase; Environmental degradation

Funding

  1. PolyU - Hong Kong [A-PM04, ITS/048/14]

Ask authors/readers for more resources

A new hierarchical reinforcement developed by coating biomimic polydopamine (PDA) on the surface of poly(p-phenylene benzobisoxazole) (PBO) fibers, which served as a platform for the graphene oxide (GO) grafting, using branched polyethyleneimine (b-PEI) as a bridging agent. The surface morphologies and chemical structures of PBO fibers were characterized for confirming the formation of covalent bond between GO and PBO fibers. The surface roughness (Ra) and wettability of the obtained fibers, denoted as PBO@PDA-PEI-GO, were obviously increased in comparison with those of untreated one. The reinforcement offered a 68.8% enhancement in the interfacial shear strength (IFSS) without degrading the base fiber. The PDA layer on the PBO fiber surface led to improved UV resistance. The hydrothermal aging resistance of PBO/epoxy composite was also greatly improved. This biomimic surface modification approach is facile to prepare, highly efficient to enhance interface, adaptable to all high-performance fibers, and meaningful in multifunctional applications. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available