4.7 Article

Optimisation of ply drop order in variable stiffness laminates

Journal

COMPOSITE STRUCTURES
Volume 152, Issue -, Pages 791-799

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2016.05.076

Keywords

Composite optimisation; Variable stiffness; Steering; Blending; Stacking sequence table

Funding

  1. CANAL (CreAting Non-conventionAl Laminates) project, European Union Seventh Framework Program

Ask authors/readers for more resources

Modern composite structures offer multiple avenues of optimising performance. One avenue is to optimise a single stacking sequence over the structure leading to constant stiffness designs. Another avenue is to allow the stacking sequence to vary over the structure leading to variable stiffness laminates. This may be achieved either by dropping plies or by steering the fibres. When using ply drops to optimise the thickness distribution two different set of decisions are involved: the selection of ply drop boundaries, and the selection of the ply drop order. In this paper, the fibre angle distribution, the ply drop boundaries, and the ply drop order are simultaneously optimised. The optimisation of fibre angle distribution lends itself easily to gradient based methods. The ply drop boundary optimisation is formulated using topology optimisation techniques and is thus solvable using gradient based methods as well. The ply drop order optimisation requires discrete variables and is hence approached using an evolutionary algorithm based on stacking sequence tables. In this paper an efficient multi-step algorithm is developed to combine the optimisation of all aspects of variable stiffness laminates. The results indicate that significantly improved designs may be obtained by including the ply drop order in the optimisation. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available