4.8 Article

A Narrow-Bandgap n-Type Polymer with an Acceptor-Acceptor Backbone Enabling Efficient All-Polymer Solar Cells

Related references

Note: Only part of the references are listed.
Review Chemistry, Multidisciplinary

Narrowing the Band Gap: The Key to High-Performance Organic Photovoltaics

Pei Cheng et al.

ACCOUNTS OF CHEMICAL RESEARCH (2020)

Article Chemistry, Multidisciplinary

Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics

Shuixing Li et al.

ADVANCED MATERIALS (2020)

Article Multidisciplinary Sciences

Alloy-like ternary polymer solar cells with over 17.2% efficiency

Qiaoshi An et al.

SCIENCE BULLETIN (2020)

Editorial Material Multidisciplinary Sciences

The new era for organic solar cells: polymer acceptors

Chunhui Duan et al.

SCIENCE BULLETIN (2020)

Review Chemistry, Multidisciplinary

Polymer Acceptors Containing B←N Units for Organic Photovoltaics

Ruyan Zhao et al.

ACCOUNTS OF CHEMICAL RESEARCH (2020)

Article Chemistry, Physical

Highly Efficient All-Polymer Solar Cells Enabled by p-Doping of the Polymer Donor

Xiaopeng Xu et al.

ACS ENERGY LETTERS (2020)

Article Multidisciplinary Sciences

Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells

Kangkang Weng et al.

NATURE COMMUNICATIONS (2020)

Review Chemistry, Multidisciplinary

Acceptor-donor-acceptor type molecules for high performance organic photovoltaics - chemistry and mechanism

Xiangjian Wan et al.

CHEMICAL SOCIETY REVIEWS (2020)

Article Chemistry, Multidisciplinary

Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells

Flurin D. Eisner et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Review Chemistry, Multidisciplinary

Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells

Changyeon Lee et al.

CHEMICAL REVIEWS (2019)

Article Chemistry, Multidisciplinary

Photovoltaic Blend Microstructure for High Efficiency Post-Fullerene Solar Cells. To Tilt or Not To Tilt?

Gang Wang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Chemistry, Multidisciplinary

Aromatic-Diimide-Based n-Type Conjugated Polymers for All-Polymer Solar Cell Applications

Jing Yang et al.

ADVANCED MATERIALS (2019)

Review Chemistry, Multidisciplinary

All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects

Gang Wang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Physical

Design rules for minimizing voltage losses in high-efficiency organic solar cells

Deping Qian et al.

NATURE MATERIALS (2018)

Review Chemistry, Physical

Organic solar cells based on non-fullerene acceptors

Jianhui Hou et al.

NATURE MATERIALS (2018)

Review Nanoscience & Nanotechnology

Non-fullerene acceptors for organic solar cells

Cenqi Yan et al.

NATURE REVIEWS MATERIALS (2018)

Article Chemistry, Physical

How to determine optical gaps and voltage losses in organic photovoltaic materials

K. Vandewal et al.

SUSTAINABLE ENERGY & FUELS (2018)

Article Multidisciplinary Sciences

Assessing the nature of the charge-transfer electronic states in organic solar cells

Xian-Kai Chen et al.

NATURE COMMUNICATIONS (2018)

Article Chemistry, Physical

Understanding Energy Loss in Organic Solar Cells: Toward a New Efficiency Regime

S. Matthew Menke et al.

JOULE (2018)

Article Chemistry, Multidisciplinary

Constructing a Strongly Absorbing Low-Bandgap Polymer Acceptor for High-Performance All-Polymer Solar Cells

Zhi-Guo Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2017)

Review Chemistry, Multidisciplinary

Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale

Jonathan Rivnay et al.

CHEMICAL REVIEWS (2012)