4.8 Article

Cross-Linked Gold Nanoparticle Composite Membranes as Highly Sensitive Pressure Sensors

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 30, Issue 40, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202003381

Keywords

gold nanoparticles; MEMS; nanoparticle composites; NEMS; sensors

Funding

  1. DFG [VO698/3-1]

Ask authors/readers for more resources

In this article, highly sensitive differential pressure sensors based on free-standing membranes of cross-linked gold nanoparticles are demonstrated. The nanoparticle membranes are employed as both diaphragms and resistive transducers. The elasticity and the pronounced resistive strain sensitivity of these nanometer-thin composites enable the fabrication of sensors achieving high sensitivities exceeding 10(-3) mbar(-1)while maintaining an overall small membrane area. Furthermore, by combining micro-bulge tests with atomic force microscopy and in situ resistance measurements the membranes' electromechanical responses are studied through precise observation of the concomitant changes of the membranes' topography. The study demonstrates the high potential of free-standing nanoparticle composites for the fabrication of highly sensitive force and pressure sensors and introduces a unique and powerful method for the electromechanical investigation of these materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available