4.8 Article

Aluminum Metal-Organic Batteries with Integrated 3D Thin Film Anodes

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 30, Issue 51, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202004573

Keywords

3D anodes; aluminum batteries; organic cathodes; sputtering; thin films

Funding

  1. AForsk Foundation [18-419]
  2. Swedish Energy Agency [43525-1, 50121-1]
  3. Slovenian Research Agency [P2-0393, Z2-1864, J2-8167]

Ask authors/readers for more resources

Aluminum 3D thin film anodes fully integrated with a separator are fabricated by sputtering and enable rechargeable aluminum metal batteries with high power performance. The 3D thin film anodes have an approximately four to eight times larger active surface area than a metal foil, which significantly both reduces the electrochemical overpotential, and improves materials utilization. In full cells with organic cathodes, that is, aluminum metal-organic batteries, the 3D thin film anodes provide 165 mAh g(-1)at 0.5 C rate, with a capacity retention of 81% at 20 C, and 86% after 500 cycles. Post-mortem analysis reveals structural degradation to limit the long-term stability at high rates. As the multivalent charge carrier active here is AlCl2+, the realistic maximal specific energy, and power densities at cell level are approximate to 100 Wh kg(-1)and approximate to 3100 W kg(-1), respectively, which is significantly higher than the state-of-the-art for Al batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available