4.8 Article

Self-Powered, Electrochemical Carbon Nanotube Pressure Sensors for Wave Monitoring

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 30, Issue 42, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202004564

Keywords

carbon nanotubes; electrochemical sensing; pressure sensors; self-powered sensors; wave monitoring

Funding

  1. National Natural Science Foundation of China [51572095]
  2. Natural Science Foundation of Hubei Province, China [2018CFA049]
  3. Robert A. Welch Foundation [AT-0029]
  4. China Scholarship Council (CSC)

Ask authors/readers for more resources

Underwater pressure sensors with high sensitivity over a broad pressure range are urgently required for the collection of valuable data on pressure changes associated with various wave motions. Here, a class of carbon-nanotube-based pressure sensors, which can be directly used in oceans without packaging, is reported. They use salt water as an electrolyte for electrochemically converting mechanical hydraulic energy into electrical energy and generating electrical signals in response to pressure changes in seawater. They can sense wave amplitudes from 1 mm (i.e., 10 Pa) to 30 m, which covers the range of almost all wave motions, and provide high stability during cycling in seawater. Also, they are self-powered and provide harvested gravimetric energy that is six orders of magnitude higher than that for commercial piezoelectric sensors for frequencies below 2 Hz (the range within most wave motion occurs), which has not been achieved before. These self-powered sensors operate from 4 to 60 degrees C and in direct contact with salt water having a wide range of salinities (from 0.1 to 5 mol L-1). Importantly, the unique electrochemical mechanism provides a new pressure sensing strategy to address the challenges in realizing high precision, low-frequency pressure measurements, and a broad detection range.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available