4.8 Article

Observation of Strong Bulk Damping-Like Spin-Orbit Torque in Chemically Disordered Ferromagnetic Single Layers

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 30, Issue 48, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202005201

Keywords

ferromagnetic resonances; inversion symmetry breaking; spin currents; spin-orbit torques

Funding

  1. Office of Naval Research [N00014-15-1-2449]
  2. NSF MRSEC program through the Cornell Center for Materials Research [DMR-1719875]
  3. NSF [ECCS-1542081]

Ask authors/readers for more resources

Strong damping-like spin-orbit torque (tau(DL)) has great potential for enabling ultrafast energy-efficient magnetic memories, oscillators, and logic. So far, the reported tau(DL)exerted on a thin-film magnet must result from an externally generated spin current or from an internal non-equilibrium spin polarization in non-centrosymmetric GaMnAs single crystals. Here, for the first time a very strong, unexpected tau(DL)is demonstrated from current flow within ferromagnetic single layers of chemically disordered, face-centered-cubic CoPt. It is established here that the novel tau(DL)is a bulk effect, with the strength per unit current density increasing monotonically with the CoPt thickness, and is insensitive to the presence or absence of spin sinks at the CoPt surfaces. This tau(DL)most likely arises from a net transverse spin polarization associated with a strong spin Hall effect, while there is no detectable long-range asymmetry in the material. These results broaden the scope of spin-orbitronics and provide a novel avenue for developing single-layer-based spin-torque memory, oscillator, and logic technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available