4.8 Article

A nitric oxide-releasing hydrogel for enhancing the therapeutic effects of mesenchymal stem cell therapy for hindlimb ischemia

Journal

ACTA BIOMATERIALIA
Volume 113, Issue -, Pages 289-304

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2020.07.011

Keywords

Nitric oxide; Mesenchymal stem cells; Angiogenesis; Hydrogel; Hindlimb ischemia; Endothelial cells; Bioluminescence imaging (BLI)

Funding

  1. National Key R&D Program of China [2017YFA0103200]
  2. National Natural Science Foundation of China [81925021, 81671734]
  3. Key Projects of Tianjin Science and Technology Support Program [18YFZCSY00010]

Ask authors/readers for more resources

Therapeutic angiogenesis with mesenchymal stem cells (MSCs) is promising for the clinical treatment of peripheral artery disease (PAD). However, the heterogeneous proangiogenic nature of MSCs is a key challenge in developing more effective treatments with MSCs for therapeutic angiogenesis purposes. Here, we propose to enhance the therapeutic function of human placenta-derived MSCs (hP-MSCs) in hindlimb ischemia therapy by using nitric oxide (NO)-releasing chitosan hydrogel (CS-NO). Our data showed that the co-transplantation of CS-NO hydrogel with hP-MSCs remarkably improved the grafting of hP-MSCs and ameliorated the functional recovery of ischemic hindlimbs. Moreover, we found that the neovascularization of damaged hindlimbs was significantly increased after co-transplanting CS-NO hydrogel and hP-MSCs, as confirmed by bioluminescence imaging (BLI). Further analysis revealed an endothelial-like status transformation of hP-MSCs in the presence of NO, which was identified as a potential mechanism contributing to the enhanced endothelium-protective and proangiogenic capacities of hP-MSCs that promote angiogenesis in mouse models of hindlimb ischemia. In conclusion, this study provides a promising approach for using NO hydrogel to improve the proangiogenic potency of MSCs in ischemic diseases, and the strategy used here facilitates the development of controlled-release scaffolds for enhancing the therapeutic efficiency of MSCs in angiogenic therapy. Statement of significance The heterogeneous proangiogenic nature of mesenchymal stem cells (MSCs) is a key challenge in developing more effective treatments with MSCs for therapeutic angiogenesis purposes. In this study, we investigated whether nitric oxide (NO)-releasing chitosan hydrogel (CS-NO) could improve the proangiogenic potency of MSCs in ischemic diseases. Our results revealed an endothelial-like status transformation of human placenta-derived MSCs (hP-MSCs) in the presence of NO, which was identified as a potential mechanism contributing to the enhanced endothelium-protective and proangiogenic capacities of hP-MSCs that promote angiogenesis in mouse models of hindlimb ischemia. The strategy for enhancing the pro-angiogenic activity of MSCs with biomaterials provides a practical idea for overcoming the challenges associated with the clinical application of MSCs in therapeutic angiogenesis. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available