4.8 Article

Biomimetic periosteum-bone substitute composed of preosteoblast-derived matrix and hydrogel for large segmental bone defect repair

Journal

ACTA BIOMATERIALIA
Volume 113, Issue -, Pages 317-327

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2020.06.030

Keywords

Decellularized matrix; GelMA; Periosteum-bone substitute; Regeneration; Critical-sized segmental bone defect

Funding

  1. National Science Fund for Distinguished Young Scholars [81925027]
  2. National Natural Science Foundation of China [31530024, 31872748]
  3. Natural Science Foundation of Jiangsu Province [BK20191150]
  4. Jiangsu Provincial Special Program of Medical Science [BL2012004]
  5. China Postdoctoral Science Foundation [2016M590500, 2017T100398]
  6. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Ask authors/readers for more resources

Repairing large segmental bone defects above a critical size remains challenging with high risk of delayed union or even non-union. From the perspective of bone development and clinical experience, periosteum plays an indispensable role in bone repair and reconstruction. In this study, we explored the feasibility of using preosteoblast-derived matrix (pODM) as a biomimetic periosteum. By culturing MC3T3-E1 cell sheet on poly(dimethylsiloxane) and performing decellularization, an integral cell-free sheet of pODM could be readily harvested. Bone marrow mesenchymal stem cells (BMSCs) adhered and proliferated well on pODM. In addition, pODM exhibited a chemotactic effect on BMSCs in a concentration-dependent manner and also promoted osteogenic differentiation of BMSCs. Following that, pODM was wrapped around a gelatin methacryloyl (GelMA) hydrogel to construct an engineered periosteum-bone substitute. A rabbit radius segmental bone defect model was used to examine the bone repair efficacy of pODM/GelMA. Upon implantation of pODM/GelMA construct for 12 weeks, the critical-sized bone defects completely healed with remarkable full reconstruction of medullary cavity at the radial diaphysis. Together, this work proposes a high potency of using precursor cell-derived matrix as a biomimetic periosteum, which preserves the beneficial biological factors while avoids the limitations of using exogenous cells for bone regeneration. Combining precursor cell-derived matrix with hydrogel may provide a promising periosteum-bone biomimetic substitute for bone repair. Statement of Significance Repairing large segmental bone defects above a critical size remains challenging. As the periosteum plays an essential role in bone repair, this study aimed to explore the use of preosteoblast-derived matrix (pODM), harvested from decellularized MC3T3-E1 cell sheet, as a biomimetic periosteum to facilitate bone repair. We found that in vitro, pODM exhibited considerable chemotactic effect and osteogenic induction capability to bone marrow mesenchymal stem cells (BMSCs). In vivo, implantation of pODM/gelatin methacryloyl (GelMA) constructs as engineered periosteum-bone substitutes effectively repaired the critical-sized segmental bone defects at rabbit radius. Surprisingly, remarkable full reconstruction of medullary cavity at the diaphysis was achieved. Therefore, combining pODM with hydrogel may provide a promising biomimetic substitute for bone repair. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available