4.8 Article

MOF-Derived 2D/3D Hierarchical N-Doped Graphene as Support for Advanced Pt Utilization in Ethanol Fuel Cell

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 12, Issue 42, Pages 47667-47676

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c15493

Keywords

2D/3D hierarchy; ultralow Pt Loading; Pt3Co alloy; ORR; EOR

Funding

  1. fundamental research fund from Shenzhen [JCYJ20190806144813150]

Ask authors/readers for more resources

Development of bifunctional catalysts with low platinum (Pt) content for the ethanol oxidation reaction (EOR) and the oxygen reduction reaction (ORR) is highly desirable, yet challenging. Herein, we present structural engineering of a series of two-dimensional/three-dimensional ( 2D/3D) hierarchical N-doped graphene-supported nanosized Pt3Co alloys and Co clusters (PtCo@N-GNSs) via a hydrolysis-pyrolysis route. For the ORR, the optimal PtCo@N-GNS exhibits a high mass activity of 3.01 A mg(Pt)(-1), which is comparable to the best Pt-based catalyst obtained through sophisticated synthesis. It also possesses excellent stability with minor decay after 50 000 cyclic voltammograms (CV) cycles in acidic medium. For the EOR, PtCo@N-GNS achieves the highest mass-specific and area-specific activities of 1.96 A mg(Pt)(-1) and 5.75 mA cm(-2), respectively, among all of the reported EOR catalysts to date. The unique 2D/3D hierarchy, high Pt utilization, and valid encapsulation of nanosized Pt3Co/Co synergistically contribute to the robust ORR and EOR activities of the present PtCo@N-GNS. A direct ethanol fuel cell based on PtCo@N-GNS delivers a high open-circuit potential of 0.9 V, a stable power density of 10.5 mW cm(-2), and an excellent rate performance, implying the feasibility of the bifunctional PtCo@N-GNS. This work offers a new strategy for designing an ultralow Pt loading yet highly active and durable catalyst for ethanol fuel cell application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available