4.5 Article

Pressure coring operations during The University of Texas-Gulf of Mexico 2-1 (UT-GOM2-1) Hydrate Pressure Coring Expedition in Green Canyon Block 955, northern Gulf of Mexico

Journal

AAPG BULLETIN
Volume 104, Issue 9, Pages 1877-1901

Publisher

AMER ASSOC PETROLEUM GEOLOGIST
DOI: 10.1306/02262019036

Keywords

-

Funding

  1. DOE [DE-FE0023919]
  2. agency of the United States Government
  3. Bureau of Ocean Energy Management

Ask authors/readers for more resources

In May 2017, The University of Texas Hydrate Pressure Coring Expedition Gulf of Mexico 2-1 (UT-GOM2-1) drilled two adjacent holes in Green Canyon Block 955 in the deep-water Gulf of Mexico as part of The University of Texas at Austin and US Department of Energy Deepwater Methane Hydrate Characterization and Scientific Assessment. Expedition operations included testing two configurations of a rotary pressure-coring tool in a gas hydrate-bearing formation. In the first hole, an extended core barrel (cutting shoe) configuration of the Pressure Coring Tool with Ball Valve (PCTB-CS) was deployed, and in the second hole, the PCTB face bit configuration (PCTB-FB) was deployed. The PCTB-CS successfully recovered and maintained pressure for only one core out of eight deployments. A series of incremental modifications were made during and after the PCTB-CS deployment period that impacted the operations of the subsequent PCTB-FB deployments. Thus, in the second hole, the PCTB-FB successfully recovered and maintained pressure within the hydrate stability zone for 11 cores out of 13 deployments. The PCTB cored gas hydrate-bearing sandy silt interbedded with non-hydrate-bearing clayey silt within the main reservoir. The PCTB also recovered long intervals of unbroken, high-quality core with preserved sedimentary structures. We recovered one pressure core 130 m (437 ft) above the main hydrate reservoir in the silty day. Pressure coring is the only available technology for recovering intact cores from sediment that is normally disturbed by gas expansion, dissolution, or dissociation; this allows a wide range of scientific measurements to be obtained with minimal disturbance to the core sediment fabric. Analysis of pressure cores has the potential to illuminate the in situ properties, gas saturation, and gas composition of a wide range of reservoirs including unconventional shale systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available