4.6 Article

A sEMG-Driven Soft ExoSuit Based on Twisted String Actuators for Elbow Assistive Applications

Journal

IEEE ROBOTICS AND AUTOMATION LETTERS
Volume 5, Issue 3, Pages 4094-4101

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LRA.2020.2988152

Keywords

Wearable technology; twisted string actuation; sEMG; soft exoskeleton; soft robotics

Categories

Ask authors/readers for more resources

The scope of this letter is to show the applicability of the Twisted String Actuators (TSAs) for lightweight, wearable and assistive robotic applications. To this aim, we have developed a novel surface electromyography (sEMG)-driven soft ExoSuit using the TSAs to perform both single and dual-arm elbow assistive applications. The proposed ExoSuit, with an overall weight of 1650 g, uses a pair of TSAs mounted in the back of the user, connected via tendons to the user's forearms to actuate each arm independently for supporting external loads. We confirm this new light-weight and customizable wearable solution via multiple user studies based on the biceps and tricep' sEMG measurements. We demonstrate that user's muscles can automatically activate and regulate the TSAs and compensate for the user's effort: by using our controller based on a Double Threshold Strategy (DTS) with a standard PID regulator, we report that the system was able to limit the biceps' sEMG activity under an arbitrary target threshold, compensating a muscular activity equal to 220% (related to a single arm 3 kg load) and 110% (related to a dual arm 4 kg load) of the threshold value itself. Moreover, the triceps'sEMGsignal detects the external load and, depending on the threshold, returns the system to the initial state where it requires no assistance from the ExoSuit. The experimental results show the proposed ExoSuit's capabilities in both single and dual-arm load compensation tasks. Therefore, the applicability of the TSAs is experimentally demonstrated for a real-case assistive device, fostering future studies and developments of this kind of actuation strategy for wearable robotic systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available