4.6 Article

Dietary Supplementation with Omega-6 LC-PUFA-Rich Microalgae Regulates Mucosal Immune Response and Promotes Microbial Diversity in the Zebrafish Gut

Journal

BIOLOGY-BASEL
Volume 9, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/biology9060119

Keywords

arachidonic acid; bacterial community; dihomo-gamma-linolenic acid; fish; intestine; immunity; immune function; microbiome

Categories

Funding

  1. U.S. Agency for International Development, Mid-East regional Cooperation (MERC) Projects [M28-061, M33-034]
  2. Jewish Charitable Association (JCA), Israel
  3. Israeli Council for Higher Education, Planning and Budgeting Committee (PBC) program

Ask authors/readers for more resources

The effect of dietary omega-6 long-chain polyunsaturated fatty acid (LC-PUFA) on host microbiome and gut associated immune function in fish is unexplored. The effect of dietary supplementation with the omega-6 LC-PUFA-rich microalgaLobosphaera incisawild type (WT) and its delta-5 desaturase mutant (MUT), rich in arachidonic-acid and dihomo-gamma-linolenic acid (DGLA), respectively, on intestinal gene expression and microbial diversity was analyzed in zebrafish. For 1 month, fish were fed diets supplemented with broken biomass at 7.5% and 15% (w/w) of the twoL. incisastrains and a control nonsupplemented commercial diet. Dietary supplementation resulted in elevated expression of genes related to arachidonic acid metabolism-cyclooxygenase 2 (cox-2), lipoxygenase 1(lox-1), anti-inflammatory cytokine-interleukin 10 (il-10), immune defense-lysozyme (lys), intestinal alkaline phosphatase (iap), complement (c3b), and antioxidants-catalase (cat), glutathione peroxidase (gpx). Microbiome analysis of the gut showed higher diversity indices for microbial communities in fish that were fed the supplemented diets compared to controls. Different treatment groups shared 237 operational taxonomic units (OTUs) that corresponded to the core microbiome, and unique OTUs were evident in different dietary groups. Overall, the zebrafish gut microbiome was dominated by the phylum Fusobacteria and Proteobacteria (averaging 38.4% and 34.6%, respectively), followed by Bacteroidetes (12.9%), Tenericutes, Planctomycetes, and Actinobacteria (at 3.1-1.3%). Significant interaction between some of the immune-related genes and microbial community was demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available