4.7 Article

DNA methylation reprogramming during seed development and its functional relevance in seed size/weight determination in chickpea

Journal

COMMUNICATIONS BIOLOGY
Volume 3, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s42003-020-1059-1

Keywords

-

Funding

  1. Department of Biotechnology, Government of India, New Delhi (BT/AB/NIPGR/SEED BIOLOGY/2012)
  2. Tata Innovation Fellowship from the Department of Biotechnology, Government of India, New Delhi
  3. Science and Engineering Research Board, New Delhi
  4. Shiv Nadar University

Ask authors/readers for more resources

Seed development is orchestrated via complex gene regulatory networks and pathways. Epigenetic factors may also govern seed development and seed size/weight. Here, we analyzed DNA methylation in a large-seeded chickpea cultivar (JGK 3) during seed development stages. Progressive gain of CHH context DNA methylation in transposable elements (TEs) and higher frequency of small RNAs in hypermethylated TEs during seed development suggested a role of the RNA-dependent DNA methylation pathway. Frequency of intragenic TEs was higher in CHH context differentially methylated region (DMR) associated differentially expressed genes (DEGs). CG context hyper/hypomethylation within the gene body was observed for most of DMR-associated DEGs in JGK 3 as compared to small-seeded chickpea cultivar (Himchana 1). We identified candidate genes involved in seed size/weight determination exhibiting CG context hypermethylation within the gene body and higher expression in JGK 3. This study provides insights into the role of DNA methylation in seed development and seed size/weight determination in chickpea. Rajkumar et al. report progressive gain of CHH context DNA methylation in transposable elements during seed development in chickpea, of which hypermethylation is associated with small RNAs. The candidate genes that determine seed size/weight in chickpea show CG context hypermethylation in the gene body and higher expression in large-seeded cultivar.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available